ECE317 : Feedback and Control

Lecture:
Block Diagrams

Dr. Richard Tymerski
Dept. of Electrical and Computer Engineering Portland State University

Transfer function (review)

- A transfer function is defined by

$$
\begin{array}{r}
G(s):=\frac{Y(s)}{R(s)} \text { Laplace transform of system output } \\
R \underset{\text { input }}{R(s)} \rightarrow G(s) \xrightarrow[\text { Laplace transform of system input }]{Y(s)}=G(s) R(s)
\end{array}
$$

- A system is assumed to be at rest. (zero initial condition)
- Transfer function is a generalization of "gain" concept.

Impulse response (review)

- Suppose that $r(t)$ is the unit impulse function and system is at rest.
$g(t)$

$$
\begin{gathered}
r(t)=\delta(t) \\
R(s)=1
\end{gathered}
$$

- The output $g(t)$ for the unit impulse input is called unit impulse response.
- Since $R(s)=1$, the transfer function can also be defined as the Laplace transform of impulse response:

$$
G(s):=\mathcal{L}\{g(t)\}
$$

Course roadmap

Modeling
Laplace transform
Transfer function
Block Diagram
Linearization
Models for systems

- electrical
- mechanical
- example system

Analysis
Stability

- Pole locations
- Routh-Hurwitz

Time response

- Transient
- Steady state (error)

Frequency response

- Bode plot

Design

Matlab \& PECS simulations \& laboratories

Block diagram

- Represents relations among signals and systems
- Very useful in control systems
- Also useful in computer simulations (Simulink)
- Elements
- Block: transfer function ("gain" block)
- Arrow: signal
- Node: summation (or subtraction) of signals

Typical mistakes

Unclear which signal is "E"
E $<\cdots$ Signal must be indicated on an arrow.

Typical mistakes (cont’d)

There must be only one output from a node.
Both are fine, but they have different meanings!

Elementary TF block diagrams

- Series connection

$$
\begin{aligned}
& \xrightarrow{R(s)} G_{1}(s) \xrightarrow{Z(s)} G_{2}(s) \xrightarrow{Y(s)} \\
& \underbrace{}_{\frac{Z(s)}{R(s)}=G_{1}(s)} \\
& \frac{Y(s)}{R(s)}=G_{1}(s) G_{2}(s) \\
& \xrightarrow{R(s)} \xrightarrow{G_{1}(s) G_{2}(s)} \xrightarrow{Y(s)}
\end{aligned}
$$

Elementary TF block diagrams

- Summing Junction

$$
Z_{2}(s) \xrightarrow{Z_{1}(s) \xrightarrow{+} Y(s) ~}
$$

$$
Y(s)=Z_{1}(s)-Z_{2}(s)
$$

Elementary TF block diagrams

- Parallel connection

Transfer function (TF) with feedback

- Negative feedback system

$$
\begin{aligned}
& E(s)=R(s)-H(s) G(s) E(s) \quad \square E(s)=\frac{1}{1+G(s) H(s)} R(s) \\
& Y(s)=G(s) E(s) \\
& \Rightarrow Y(s)=\frac{G(s)}{1+G(s) H(s)} R(s) \\
& G(s) \quad \text { : forward path TF } \\
& G(s) H(s) \text { : open-loop TF }
\end{aligned}
$$

Feedback loop formula, $\mathrm{TF}_{\mathrm{R} \rightarrow \mathrm{Y}}$

The loop gain is the product of all transfer functions that form the loop

- F_{g} : Forward gain from $R(s)$ to $Y(s)$ Gs)
- L_{g} : Loop gain:
$\mathrm{G}(\mathrm{s}) \mathrm{K}(\mathrm{s})(-1)$

$$
\frac{Y(s)}{R(s)}=\frac{G(s)}{1+G(s) K(s)}
$$

Feedback loop formula, $\mathrm{TF}_{\mathrm{R} \rightarrow \mathrm{E}}$

- F_{g} : Forward gain from $R(s)$ to $E(s)$
- L_{g} : Loop gain:
$\mathrm{G}(\mathrm{s}) \mathrm{K}(\mathrm{s})(-1)$

$$
\frac{E(s)}{R(s)}=\frac{1}{1+G(s) K(s)}
$$

Exercises

Ex: TF of feedback systems

- Compute transfer functions from $R(s)$ to $Y(s)$.

$R(s)$

Ex: TF of feedback systems

- Compute transfer function from $D(s)$ to $Y(s)$.

b)

c)

Summary

- Block Diagrams
- Multiple blocks, summers
- Application of negative feedback
- Overall closed loop transfer function via block diagram reduction
- Next lecture, time response introduction

